Q1.

2	2 (á	a) I	(i)	distance from a (fixed) pointin a specified direction						
		1	(ii)	(displacement from start is zero if) car at its starting position.	B1		[3]			
	(1	b) 1	(i)1	$v^2 = u^2 + 2as$ $28^2 = 2 \times a \times 450$ (use of component of 450 scores no marks). $a = 0.87 \text{ m s}^2$ (-1 for 1 sig. fig. but once only in the question)	C1 A1	[2]				
		ı	(i)2	 v = u + at or any appropriate equation 28 = 0.87t or appropriate substitution						
Q2.										
3	(a)		i)	scatter of points (about the line) intercept (on t^2 axis) (note that answers must relate to the graph)		B1 B1	[2]			
	(b)) (i		gradient = $\Delta y/\Delta x = (100 - 0)/(10.0 - 0.6)$ gradient = 10.6 (cm s ⁻²) (allow ±0.2)		C1 A1	[2]			
		(i	ii)	(Read points to within $\pm \frac{1}{2}$ square. Allow 1 mark for 11 cm s ⁻² i.e. 2 sig fig, -1. Answer of 10 scores 0/2 marks) $s = ut + \frac{1}{2}at^2$ so acceleration = 2 x gradient acceleration = 0.212 m s ⁻²	Total	B1 B1 B1	[3] [7]			
Q3.										
	(c)	В	1	[1]						
	(d)			ect shape of diagram sides of right-angled triangle with correct orientation)	В	1				
				le = $41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram) angle $38^{\circ} \rightarrow 41^{\circ}$ or $48^{\circ} \rightarrow 51^{\circ}$, allow 1 mark)	A	2	[3]			

Q4.

2	(a)	2.49	· · · · · · · · · · · · · · · · · · ·	A1	ľ	1]
	(b)	reco heig (ans	and (c), allow answers as (+) or (-) gnises distance travelled as area under graph line ht = (½ × 2.4 × 9.0) - (½ × 1.6 × 6.0) = 6.0 m (allow 6 m) ewer 15.6 scores 2 marks ewer 10.8 or 4.8 scores 1 mark) mative solution: s = ut - ½at²	. C1	ŗ	3]
		(ans	$= (9 \times 4) - \frac{1}{2} \times (9 / 2.4) \times 4^{2}$ $= 6.0 \text{ m}$ wer 66 scores 2 marks wer 36 or 30 scores 1 mark)			
Q 5.						
2	(a)	sca sca vec	lar		B1 B1 B1	[3]
	(b)	(i)	1 gradient (of graph) is the speed/velocity (can be scored here or in 2) initial gradient is zero		B1 B1	[2]
			2 gradient (of line/graph) becomes constant		В1	[1]
		(ii)	speed = $(2.8 \pm 0.1) \text{ m s}^{-1}$ (if answer > ± 0.1 but $\leq \pm 0.2$, then award 1 mark)		A2	[2]
		(iii)	curved line never below given line and starts from zero continuous curve with increasing gradient line never vertical or straight		B1 B1 B1	[3]
Q6 .						
2	(a)	cons	initial speed is zero stant acceleration ight line motion v two, one mark each)	B2	ľ	2]
	(b)	16-7-676	s = ½a t² 0.79 = ½ × 9.8 × t² t = 0.40 s allow 1 SF or greater 2 or 3 SF answer	C1 A1 A1	ŗ	31
		D. D.	distance travelled by end of time interval = 90 cm $0.90 = \frac{1}{2} \times 9.8 \times t^2$ $t = 0.43$ s allow 2 SF or greater time interval = 0.03 s	C1 C1 A1	ľ	31
	(c)	3000000000	resistance) means ball's speed/acceleration is lessth of image is shorter	M1 A1	[2	2]

Q7.

3	(a)	dist	evidence of use of area below the line listance = 39 m (allow $\pm 0.5m$) if $> \pm 0.5m$ but ≤ 1.0 m, then allow 1 mark)				
Q8.							
1	(a)		alar has only magnitude ctor has magnitude and direction				
	(b)	kin	netic energy, mass, power all three underlined				
	(c)	(i)	$s = ut + \frac{1}{2}at^{2}$ $15 = 0.5 \times 9.81 \times t^{2}$ $T = 1.7 \text{ s}$ if $g = 10$ is used then -1 but only once on paper	C1 A1	[2]		
		(ii)	vertical component v_v : $v_v^2 = u^2 + 2as = 0 + 2 \times 9.81 \times 15$ or $v_v = u + at = 9.81 \times 1.7(5)$ $v_v = 17.16$ resultant velocity: $v^2 = (17.16)^2 + (20)^2$ $v = 26 \text{ ms}^{-1}$	C1 C1 A1	[3]		
			If $u = 20$ is used instead of $u = 0$ then 0/3 Allow the solution using: initial (potential energy + kinetic energy) = final kinetic energy				
		(iii)	distance is the actual path travelled displacement is the straight line distance between start and finish points (in that direction) / minimum distance	B1 n B1	[2]		

Q9.

```
2 (a) (i) base units of D:
                     force: kg m s<sup>-2</sup>
                                                                                                                       B1
                                        velocity: ms-1
                     radius: m
                                                                                                                       B1
                      base units of D: [F/(R \times v)] \text{ kg m s}^{-2}/(m \times m \text{ s}^{-1})
                                                                                                                      M1
                     = kg m^{-1} s^{-1}
                                                                                                                       A0
                                                                                                                              [3]
                (ii) 1. F = 6\pi \times D \times R \times v = [6\pi \times 6.6 \times 10^{-4} \times 1.5 \times 10^{-3} \times 3.7]
                                                  = 6.9 \times 10^{-5} \text{ N}
                                                                                                                       A1
                                                                                                                              [1]
                     2. mg - F = ma
                                                  hence a = g - [F / m]
                           m = \rho \times V = \rho \times 4/3 \pi R^3 = (1.4 \times 10^{-5})
                                                                                                                       C1
                           a = 9.81 - [6.9 \times 10^{-5}] / \rho \times 4/3 \pi \times (1.5 \times 10^{-3})^{3}
                                                                                                (9.81 - 4.88)
                                                                                                                      M1
                           a = 4.9(3) \text{ m s}^{-2}
                                                                                                                       A1
                                                                                                                              [3]
           (b) (i) a = g at time t = 0
                                                                                                                       B1
                     a decreases (as time increases)
                                                                                                                       B1
                      a goes to zero
                                                                                                                       B1
                                                                                                                              [3]
                (ii) Correct shape below original line
                                                                                                                      M1
                      sketch goes to terminal velocity earlier
                                                                                                                              [2]
                                                                                                                       A1
Q10.
     2 (a) (i) v = u + at
                                                                                                                      C1
                         = 4.23 + 9.81 \times 1.51
                                                                                                                     M1
                         = 19.0(4) \text{ m s}^{-1} (Allow 2 s.f.)
                                                                                                                      A0
                                                                                                                                 [2]
                     (Use of -g \max 1/2. Use of g = 10 \max 1/2. Allow use of 9.8. Allow 19 ms<sup>-1</sup>)
               (ii) either s = ut + \frac{1}{2} at^2 (or v^2 = u^2 + 2as etc.)
                                = 4.23 \times 1.51 + 0.5 \times 9.81 \times (1.51)^{2}
                                                                                                                      C1
                                = 17.6 \text{ m} (or 17.5 m)
                                                                                                                      A1
                                                                                                                                 [2]
                                (Use of -g here wrong physics (0/2))
011.
   2 (a) (i) v^2 = u^2 + 2as
                       = (8.4)^2 + 2 \times 9.81 \times 5
                                                                                                                     C1
                       = 12.99 ms<sup>-1</sup> (allow 13 to 2 s.f. but not 12.9)
                                                                                                                      A1
                                                                                                                                 [2]
              (ii) t = (v - u)/a or s = ut + \frac{1}{2}at^2
                     = (12.99 - 8.4) / 9.81 \text{ or } 5 = 8.4t + \frac{1}{2} \times 9.81t^{2}
                                                                                                                     M1
                   t = 0.468 s
                                                                                                                     A0
                                                                                                                                 [1]
        (b) reasonable shape
                                                                                                                     M1
              suitable scale
                                                                                                                     A1
              correctly plotted 1st and last points at (0,8.4) and (0.88 - 0.96,0)
              with non-vertical line at 0.47 s
                                                                                                                     A1
                                                                                                                                 [3]
```

Q12.

	2	(a)	(i)	1. distance of path / along line AB	B1	[1]
				2. shortest distance between AB / distance in straight line between AB or displacement from A to B	В1	[1]
			(ii)	acceleration = rate of change of velocity	A1	[1]
		(b)	(i)	distance = area under line or $(v/2)t$ or $s = (8.8)^2 / (2 \times 9.81)$ = 8.8 / 2 × 0.90 = 3.96 m or $s = 3.95$ m = 4(.0) m	C1 A1	[2]
			(ii)	acceleration = $(-4.4 - 8.8) / 0.50$ = $(-) 26(.4) \text{ m s}^{-2}$	C1 A1	[2]
		(c)	(i)	the accelerations are constant as straight lines	В1	
				the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one slows down)	B1	[2]
			(ii)	area under the lines represents height or KE at trampoline equals PE at maximum height	В1	
				second area is smaller / velocity after rebound smaller hence KE less	B1	
				hence less height means loss in potential energy	A0	[2]
Q13						
3	(a))		$v^2 = u^2 + 2as$ OR use of triangle etc		
				s = 0.82 m OR $0.80 m$	Al	[2]
	(b))	:	$\Delta p = m(v - u)$ OR $p = mv$ speeds are 4.2 m s ⁻¹ and 3.6 m s ⁻¹ $\Delta p = 0.045 (4.2 + 3.6) (2/4 \text{ only if speeds not added})$ $= 0.35 \text{ N s}$ (1 mark only if only one speed used)	C1	[4]
	(c)			any time between 0.14 s and 0.17 s	C 1	
				= 2.5 N	Al	[2]

Q14.

1 (a) (i) (ii) the velocity is decreasing or force/acceleration is in negative [2] (b) (i) e.g. separation of dots becomes constant/does not continue to increase (must make a reference to the diagram).......B1 (ii)1 at constant speed, distance travelled in 0.1 s = 25 cm distance = $132 + (4 \times 25)$ [4] $s = ut + \frac{1}{2}at^2$ (c) t = 0.57 s......C1 [3] Q15. 3 (a) constant gradient/straight line B1 [1] (b) (i) 1.2 s A1 (ii) 4.4 s A1 [2] (c) either use of area under line or h = average speed x time C1 $h = \frac{1}{2} \times (4.4 - 1.2) \times 32$ C1 $= 51.2 \, \text{m}$ A1 [3] (allow 2/3 marks for determination of h = 44 m or h = 58.4 m allow 1/3 marks for answer 7.2 m) (d) $\Delta p = m\Delta v OR p = mv$ C1 $= 0.25 \times (28 + 12)$ C1 = 10 NsA1 [3] (answer 4 N s scores 2/3 marks)

3	(e)	(i)) total/sum momentum before = total/sum momentum after				B 1	
		in a		closed system			В1	[2]
		(ii)	either	the system is the ball and Earth			В1	
				momentum of Earth changes by same amount			В1	
				but in the opposite direction			В1	
			or	Ball is not an isolated system/there is a force on the ball	(B1)			
				Gravitational force acts on the ball	(B1)			
				causes change in momentum/law does not apply here	(B1)			[3]
				(if explains in terms of air resistance, allow first mark on	(y)			
Q16.								
3		(a)		change in velocity/time (taken)		Е	31	[1]
	(b)			velocity is a vector/velocity has magnitude & direction direction changing so must be accelerating		B1 B1		[2]
Q17.								
4	1	(a) (i)		use of tangent at time $t = 0$ acceleration = 42 ± 4 cm s ⁻²		B1 A1	[2	2]
			(ii)	use of area of loop distance = 0.031 ± 0.001 m allow 1 mark if 0.031 ± 0.002 m)		B1 B2	Į	31
Q18.								
2	(a)		dra ac	es a tangent (anywhere), not a single point aws tangent at correct position celeration = 1.7 ± 0.1 utside $1.6 \rightarrow 1.8$ but within $1.5 \rightarrow 1.9$, allow 1 mark)			C1 B1 A2	[4]
	(b)	(cause slope (of tangent of graph) is decreasing celeration is decreasing			M1 A1	[2]
		(ii) e.	a. air resistance increases (with speed) ngle of) slope of ramp decreases			B1	[1]
	(c)			atter of points about <u>line</u> ercept / line does not go through origin			B1 B1	[1] [1]

Q19.

2	(a) 3	3.5 <i>T</i>	B1	[1]
	(b) ((i) distance = average speed × time (however expressed) = 14 m	C1 A1	[2]
	(i	ii) distance = $5.6 \times (T-5)$ (or $3.5T-14$)	A1	[1]
		3.5T = 14 + 5.6(T - 5) T = 6.7 s	C1 A1	[2]
	(d) ((i) acceleration = (5.6 / 5 =) 1.12 m s ⁻² force = ma = 75 N	C1 C1 A1	[3]
	(i	ii) power = (force × speed =) {75 + 23} × 4.5 = 440 W (allow 1/2 for 234 W, 0/2 for 338 W or 104 W)	C1 A1	[2]
Q20.				
2	(a) (i	i) $v^2 = 2as$ $v^2 = 2 \times 0.85 \times 9.8 \times 12.8$ $v = 14.6 \text{ m s}^{-1}$	C1 A1	[2
	O	ii) time = 29.3 / 14.6 = 2.0 s (any acceleration scores 0 marks; allow 1 s.f.)	C1 A1	[2
	c c s	wither $60 \text{ km h}^{-1} = 16.7 \text{ m s}^{-1}$ or $14.6 \text{ m s}^{-1} = 53 \text{ km h}^{-1}$ or $22.1 \text{ m s}^{-1} = 79.6 \text{ km h}^{-1}$ so driving within speed limit out reaction time is too long / too slow	M1 A1 B1	[3:

Q21.

	2	(a)	(i)	(air) resistance increases with speed		1				
			(ii)	either (air) resistance is zero or weight / gravitational force is only force	1 [1	1				
		(b)	acc (for	e of gradient of a tangent	1 2 [3	1				
		(c)	(i)	1 weight = $90 \times 9.8 = 880 \text{ N}$ (use of $g = 10 \text{ m s}^2$ then deduct mark but once only in the Paper)	•	1				
				2 accelerating force = 90 × 1.9 = 170 N(allow ecf)	.1 [1	1				
			(ii)	resistive force = 880 – 170 = 710 N	.1 [1	1				
			Пот							
Q22	<u>2</u> .									
	3	(a)	m	speed = 4.0 m s ⁻¹ (allow 1 s.f.)	Δ1	[1]				
	•	(-,				100				
			(ii)	$v^2 = 2gh$ = 2 × 9.8 × 1.96		[1]				
		(b)	spe at (rect basic shape with correct directions for vectors $(7.4 \pm 0.2) \text{ m s}^{-1}$ $(33 \pm 2)^{\circ}$ to the vertical $(33 \pm 2)^{\circ}$ to be awarded, speed and angle must be correct on the diagram – not contains the correct on the diagram – not contains $(33 \pm 2)^{\circ}$ to the awarded, speed and angle must be correct on the diagram – not contains $(33 \pm 2)^{\circ}$ to the awarded.	A1 A1	[3] ted)				
	(c)	(i)	spe	her $v^2 = 2 \times 9.8 \times 0.98$ or $v = 6.2 / \sqrt{2}$ eed = 4.4 m s ⁻¹		[2]				
		(ii)		momentum = mv	C1	ro1				
			50,000	= 0.36 kg m s ⁻¹ se of 0.034 (6.2 - 4.4) loses last two marks) force = $\Delta p / \Delta t$ (however expressed) $= \frac{0.36}{0.40}$		[3]				
				0.12 = 3.0 N(allow 1 s.f.)	A 1	[2]				
				п	otal:	121				

Q23.

2	(a)	(i)	horizontal speed constant at 8.2 m s ⁻¹ vertical component of speed = 8.2 tan 60° = 14.2 m s ⁻¹	C1 M1 A0	[2]
		(ii)	$14.2^2 = 2 \times 9.8 \times h$ (using $g = 10$ then -1) vertical distance = 10.3 m	C1 A1	[2]
	(iii)		time of descent = $14.2 / 9.8 = 1.45 \text{ s}$ $x = 1.45 \times 8.2$ = 11.9 m	C1 A1	[2]
	(b)	(i)	smooth path curved and above given path hits ground at more acute angle	M1 A1	[2]
		(ii)	smooth path curved and below given path hits ground at steeper angle	M1 A1	[2]
Q24.					
2	(a)	(i)	$V_{\rm H} = 12.4 \cos 36^{\circ} \ (= 10.0 \ {\rm m s^{-1}})$ distance = 10.0×0.17	C1	
		(ii)	= 1.7 m $V_V = 12.4 \sin 36^\circ (= 7.29 \mathrm{m s^{-1}})$ $h = 7.29 \times 0.17 - \frac{1}{2} \times 9.81 \times 0.17^2$ = 1.1 m	A1 C1 C1 A1	[2]
	(b)		ooth curve with ball hitting wall below original ooth curve showing rebound to ground with correct reflection at wall	B1 B1	[2]
Q25.					
4	(a) ac	ceptable straight line drawn (touching every point)	B1	[1]
	(b		e distance fallen is not d is the distance fallen plus the diameter of the ball	C1 A1	[2]
		('c	is not measured to the bottom of the ball' scores 2/2)		
	(c) (i)	diameter: allow 1.5 ± 0.5 cm (accept one SF) no ecf from (a)	A1	[1]
		(ii)	gradient = 4.76, \pm 0.1 with evidence that origin has not been used gradient = g / 2 g = 9.5 m s ⁻²	C1 C1 A1	[3]

Q26.

```
3 (a) (i) horizontal velocity = 15 \cos 60^\circ = 7.5 \,\mathrm{m \, s}^{-1}
                                                                                                            A1 [1]
              (ii) vertical velocity = 15 sin 60° = 13 m s<sup>-1</sup>
                                                                                                            A1 [1]
         (b) (i) v^2 = u^2 + 2as
                   s = (13)^2 / (2 \times 9.81) = 8.6(1) \text{ m}
                                                                                                            A1 [1]
                   using g = 10 then max. 1
              (ii) t = 13 / 9.81 = 1.326 s or t = 9.95 / 7.5 = 1.327 s
                                                                                                            A1
                                                                                                                   [1]
             (iii) velocity = 6.15 / 1.33
                                                                                                            M1
                             = 4.6 \,\mathrm{m \, s^{-1}}
                                                                                                            A0
                                                                                                                  [1]
         (c) (i) change in momentum = 60 \times 10^{-3} [-4.6 - 7.5]
                                                                                                            C1
                                            = (-)0.73 \,\mathrm{Ns}
                                                                                                            A1
                                                                                                                  [2]
              (ii) final velocity / kinetic energy is less after the collision or
                   relative speed of separation < relative speed of approach
                                                                                                            M1
                   hence inelastic
                                                                                                            A0
                                                                                                                  [1]
Q27.
        (a) average velocity = 540 / 30
                                                                                                            C1
                                 = 18 \,\mathrm{m \, s^{-1}}
                                                                                                            A1
                                                                                                                   [2]
                                                                                                            B1
        (b) velocity zero at time t = 0
             positive value and horizontal line for time t = 5 s to 35 s
                                                                                                            B1
             line / curve through v = 0 at t = 45 s to negative velocity
                                                                                                            B1
             negative horizontal line from 53 s with magnitude less than positive value and
             horizontal line to time = 100s
                                                                                                            B1
                                                                                                                   [4]
```

Q28.

	2	(a)	1.	constant velocity / speed						
			2.	eithe or		ant / uniform decrease (in velocity/speed) ant rate of decrease (in velocity/speed)	В1	[1]		
	(b) (i) distance is area under graph for both stages stage 1: distance (18 × 0.65) = 11.7 (m)									
	stage 2: distance = $(9 \times [3.5 - 0.65]) = 25.7$ (m) total distance = $37.(4)$ m (-1 for misreading graph) {for stage 2, allow calculation of acceleration (6.32m s^{-2}) and then $s = (18 \times 2.85) + \frac{1}{2} \times 6.32 (2.85)^2 = 25.7 \text{ m}$ }									
			(ii)	either F		or $E_{K} = \frac{1}{2}mv^{2}$ 0)/(3.5 - 0.65) $E_{K} = \frac{1}{2} \times 1250 \times (18)^{2}$	C1 C1			
	$F = 1250 \times 6.3 = 7900 \text{N}$ or $F = \frac{1}{2} \times 1250 \times (18)^2 / 25.7 = 7900 \text{N}$ or initial momentum = 1250×18 $F = \text{change in momentum / time taken}$ $F = (1250 \times 18) / 2.85 = 7900$									
		(c)	(i)	stage 1:	either or or	half / less distance as speed is half / less half distance as the time is the same sensible discussion of reaction time	B1	[1]		
			(ii)	stage 2:		same acceleration and $s = v^2 / 2a$ or v^2 is $\frac{1}{4}$ e distance	B1 B1	[2]		
Q29.										
1 (a) units for D identified as kg m s ⁻² all other units shown: units for A : m ² units for $\sqrt{2}$: m ² s ⁻² units for ρ : kg m ⁻³										
	$C = \frac{\text{kgms}^{-2}}{\text{kg m}^{-3} \text{ m}^2 \text{ m}^2 \text{s}^{-2}}$ with cancelling/simplification to give C no units									
	(b)	(i)	sti	raight line	from (0	,0) to (1,9.8) ± half a square	В1	[1]		
		(ii)	½ V:	mv² = mg = (2 × 9.81	h 1 × 100	or using $v^2 = 2 as$ $(3)^{1/2} = 140 \mathrm{m s}^{-1}$	C1 A1	[2]		
	(c) (i) weight = drag (D) (+ upthrust) Allow mg or W for weight and D or expression for D for drag									
		(ii)	1.	mg = 1.	4 ×10 ⁻⁵	× 9.81	C1			
				1.4 × 10) ⁻⁵ × 9.8	$31 = 0.5 \times 0.6 \times 1.2 \times 7.1 \times 10^{-6} \times v^2$	M1			
				v = 7.33	3 m s ⁻¹		Α0	[2]		
			2.			correct curvature to a horizontal line at velocity of 7 m s ⁻¹ m s ⁻¹ between 1.5 s and 3.5 s	M1 A1	[2]		

Q30.

(a) power is the rate of doing work or power = work done / time (taken) or power = energy transferred / time (taken) **B1** [1] **B1** (b) (i) as the speed increases drag / air resistance increases resultant force reduces hence acceleration is less **B1** constant speed when resultant force is zero [3] **B1** (allow one mark for speed increases and acceleration decreases) (ii) force from cyclist = drag force / resistive force **B1** $P = 12 \times 48$ M1 P = 576 WA₀ [2] (iii) tangent drawn at speed = 8.0 m s⁻¹ M1 gradient values that show acceleration between 0.44 to 0.48 m s⁻² A1 [2] (iv) F-R=maC1 $600/8 - R = 80 \times 0.5$ [using P = 576] $576 / 8 - R = 80 \times 0.5$ C1 $R = 75 - 40 = 35 \,\mathrm{N}$ R = 72 - 40 = 32 NA1 [3] (v) at 12 ms⁻¹ drag is 48 N, at 8 m s⁻¹ drag is 35 or 32 N R / v calculated as 4 and 4 or 4.4 and consistent response for whether R is proportional to v or not **B1** [1] Q31. 3 (a) (i) velocity = rate of change of displacement OR displacement change / time (taken) A1 [1] (ii) acceleration = rate of change of velocity OR change in velocity / time (taken) A1 [1] (b) (i) initial constant velocity as straight line / gradient constant **B1** middle section deceleration/ speed / velocity decreases / slowing down as gradient decreases **B1** last section lower velocity (than at start) as gradient (constant and) smaller **B1** [3] [special case: all three stages correct descriptions but no reasons 1/3] (ii) velocity = $45 / 1.5 = 30 \text{ m s}^{-1}$ A1 [1] (iii) velocity at 4.0s is $(122 - 98) / 2.0 = 12 \text{ (m s}^{-1})$ (allow 12 to 13) **B1** acceleration = $(12 - 30) / 2.5 = -7.2 \text{ m s}^{-2}$ (if answer not this value then comment needed to explain why, e.g. difficulty in drawing tangent) A1 [2] (iv) F = ma C1 $= (-)1500 \times 7.2 = (-)11000 (10800) N$ [2] A1